Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a)}$	A		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b)}$	axes labelled correctly With label or unit (1)	activity / Bq / count rate ignore radioactivity time/ seconds/ any time unit correct shaped smooth curve (1) line does not reach zero activity (1)	(3)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (i)}$	Idea of 2 half-lives (1) $11400=2 \times 5700$ Idea of halving activity twice (1) $0.55 \times 2 \times 2$ Calculation (1) $2.2(\mathrm{~Bq})$	$11400 / 5700=2$	(3)

Question Number	Answer	Acceptable answers	Mark
1(c)(ii)	Explanation linking two of: - Background radiation affects the measurement (1) - Needs to be subtracted from readings (1) - Background radiation is variable (1) - Background radiation needs to be averaged (1)	accept interfering / including varies with place/time/random nature repeating test improves reliability	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (\text { iii) }}$	One relevant idea: (New method) more accurate (1) Hard to measure a small activity (1) Background radiation affects readings (1) Need to find difference of two small quantities (1) more reliable	difficult to distinguish between the reading and background	(1) grad

Total for question $4=10$ marks

Question Number	Answer	Acceptable answers	Mark
2(a)(i)	Any two of:	Reverse arguments Gamma is a wave (1) Alpha is a helium nucleus (1) Alpha is charged (1) Alpha has a mass (1) Gamma penetrates further/ highly (1) Gamma weakly ionising (1) Gamma travels faster (1)	Gamma has no charge Gamma has no mass examples of penetrating power alpha highly ionising

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i) ~}$	D		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i i) ~}$	B		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (c)}$	An explanation linking:		(2)
	electron(s) (1)	do not allow positive electron	
	is/are lost/gained (1)	knocked off / removed/ released	

$\mathbf{3}$	5-6	- a detailed explanation mentioning some of the points with appropriate linkage to a comparison of at least two of the readings e.g. no beta particles escape forwards because the glass absorbs them, but beta particles can escape backwards so that count is
higher OR only gamma rays can get through the glass and the thick		
aluminium, so the front and side counts are about the same		
- the answer communicates ideas clearly and coherently uses a		
range of scientific terminology accurately		
- spelling, punctuation and grammar are used with few errors		

Total for question $6=12$ marks

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a)}$ (i)	A alpha particles		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3}$ (a) (ii)	A suggestion to include	Absorbs (ionising) radiation (from the sources)	Stops/reduces radiation/ radioactivity (reaching people); Stops/reduces (alpha) particles or any named ionising radiation (reaching people); Protects people/keeps it safe; Ignore - "so the source cannot pass through"

Question Number	Answer	Acceptable answers	Mark		
$\mathbf{3}$ (a) (iii)	One from Buildings/building materials, food, plants, water, outer space, rocks, air, Sun	Cosmic rays/waves; radon (gas); radioactive waste; nuclear accidents/Chernobyl/nuclear explosions; nuclear power stations;	(1)		
do NOT accept everywhere					
ignore alpha, beta, gamma,					
microwaves and X-rays, carbon					
dioxide, nitrogen, (mobile)					
phones				,\quad	
:---					

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3}$ (a) (iv)	Any two relevant precautions	Distance (between students and source); no touching; no eating; short exposure time; (use of) film badge/ detector; Protective clothing; Use of lead (lined) box /keep box shut/ sources in box (when not in use); (stand behind/use of) a screen; Do not point (source) at students; Show video/dvd of demo;	(2)
Ignore goggles, gloves, lab			
coats,;			
Answers referring to the safety of			
teacher can score a maximum of			
one of the 2 marks eg use of			
tongs			

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b) (i)}$	Calculation of number of half- lives $8 \div 4=2$ (half lives) evaluation of mass $6 \div 2=3 \div 2=1.5(\mathrm{mg})$ (1)	Award 1 mark for clearly calculating mass halves after 4 days eg 6/2 $=3(\mathrm{mg})$	(2)

Question Number	Answer	Acceptable answers	Mark
3 (b) (ii)	An explanation linking any two of the following points - people inhale radon (gas) - radon is quite likely to/may decay in the lungs (before being exhaled) (1) - causes ionisation of cells (in lungs) (1) - increases risk of (lung) cancer (1)	Breathe in radon (gas)/ breathe it in/ radon (gas) gets into the body; Gives out radiation in the body / alpha (particles) very ionising; causes damage to (DNA of) cells (in lung)/cell mutations/kills cells; (Damages the body is insufficient) (causes lung) cancer	(2)

Question Number	Answer	Acceptable answers	Mark
4(a)(i)	B		(1)

Question Number	Answer	Acceptable answers	Mark
4(a) (ii)	Any one of the following Rocks Food Radon gas Cosmic rays Own bodies Fall-out Sun/stars	Plausible named food such as coffee, brazil nut, bananas Space	(1)
	(1)	Specified medical/industrial use of x-rays Ignore smoke alarms, power stations (in normal use)	

Question Number	Answer	Acceptable answers	Mark
4(a) (iii)	An explanation linking personal circumstances such as geographical location nature of their work lifestyle		
	(1)the consequences such as radiation from radon gas/particular rocks/fall- out (eg Chernobyl) greater exposure to x-rays greater exposure to cosmic rays	(2)	

Question Number	Answer	Acceptable answers	Mark
4(a) (iv)	D		(1)

Question Number	Answer	Acceptable answers	Mark
4(b) (i)	From the graph Time taken to fall (from 120 to) 60	Any other suitable pair of readings from graph	(2)
=8 days	(1)	$8.1,8.2$ Full marks for correct answer even if no working is evident	

Question Number	Answer	Acceptable answers	Mark
4(b) (ii)	2.2 (days)	between 2.0 and 2.5 2	(1)

Question Number	Answer	Acceptable answers	Mark
4(b) (iii)	Any one of the following: \bullet Mutation of dna \bullet I I onisation of cells \bullet (Increases risk of) cancer (1)	damage / mutate cells	

Question number	Answer	Mark
5(a)(i)	One mark for each correct label (4)	
	proton	nucleus

Question number	Answer	Mark
5(b)(i)	434	(1)

Question number	Answer	Additional guidance	Mark
5(b)(ii)	34	allow 29 to 39	(1)

Question number	Answer	Additional guidance	Mark
5(b)(iii)	Radioactive decay is a random process	allow because background count changes every time	(1)

